quarta-feira, 1 de junho de 2016

Quiz 29: MATEMÁTICA 9° ANO

Quiz 29: MATEMÁTICA - 9° ANO
Quiz 29: MATEMÁTICA - 9° ANO

01
(SAEGO).

Em uma loja e embrulhos para presentes, encontramos sacos e caixas decoradas. Para ocupar menos espaços, as caixas são guardadas desmontadas. Para fazer um embrulho, a vendedora está procurando a tampa cuja planificação está feita abaixo.


Qual das figuras a seguir seria mais adequada como tampa dessa caixa?


A
B
C
D

Observe a caixa montada a seguir:

Portanto, opção C.


02
(Seduc-GO).

Para fazer um trabalho de matemática, Marina pegou uma cartolina e traçou duas retas paralelas onde desenhou alguns quadriláteros, que identificou com os nomes: figura 1, figura 2, figura 3 e figura 4.


Em qual figura Marina desenhou o trapézio?

A
B
C
D

O trapézio é uma figura geométrica plana pertencente ao grupo dos quadriláteros que possui um par de lados paralelos. Logo, o trapézio está respresentado figura 3.

Portanto, opção C.


03
(SAEGO).

A figura abaixo mostra a ampliação da bandeira do Estado de Goiás.


Qual é a razão de semelhança dessa ampliação?

A
B
C
D

A razão de semelhança dessa ampliação é:

    [tex] k = \frac{10}{5} = 2 [tex]

Portanto, opção "B".


04
(SAEP).

Joaquim, funcionário da rede de energia elétrica do Estado do Tocantins está fazendo um determinado serviço num poste e apareceu uma dúvida para saber a real altura desse poste. Sabendo-se que Joaquim colocou a escada a uma distância de 3,0 m do poste e a escada tem um comprimento de 7,0 m.


Quanto mede aproximadamente a altura do poste?

A
B
C
D

Utilizando o Teorema de Pitágoras, temos:

    [tex] a^{2} = b^{2} + c^{2} [tex]

    [tex] 7^{2} = 3^{2} + x^{2} [tex]

    [tex] 49 = 9 + x^{2} [tex]

    [tex] 49 - 9 = x^{2} [tex]

    [tex] 40 = x^{2} [tex]

    [tex] x = \sqrt{40} [tex]

    [tex] x \approx 6,3 [tex]

Portanto, opção "A".


05
(Prova da cidade).

Os irmãos José e João compraram um terreno quadrado com 20 metros de lado e resolveram dividi-lo em duas partes iguais.

Após essa divisão, qual área coube a cada um dos irmãos?

A
B
C
D

Primeiro calcular a área do terreno quadrado que José e João compraram:


    [tex] Área = L^{2} [tex]

    [tex] Área = 20^{2} [tex]

    [tex] Área = 400\ m^{2} [tex]

Agora, dividir a área em partes iguais.

    [tex] Área = \frac{400}{2} = 200\ m^{2} [tex]

Portanto, opção "D".


06
(IPOJUCA - PE).

Observe a expressão numérica no quadro abaixo.

[tex] 2 \cdot (-10 - 4) + (-3)^{2} [tex]

Qual é o resultado dessa expressão?

A
B
C
D

Desenvolvendo a expressão numérica, obtemos:

    [tex]= 2 \cdot (-10 - 4) + (-3)^{2} [tex]

    [tex]= 2 \cdot (-14) + 9 [tex]

    [tex]= -28 + 9 [tex]

    [tex]= -19 [tex]

Portanto, opção "D".


07
(IPOJUCA - PE).

João anotou em sua agenda as movimentações bancárias que ele fez em sua conta corrente,no dia 03 de setembro de 2020, conforme representado abaixo.

MOVIMENTAÇÕES BANCÁRIAS
Data Histórico Valor



03/11
Saldo anterior+ 295 reais
Pagamento conta
luz (débito)
— 178 reais
Depósito (crédito)+ 100 reais
Pagamento de conta
telefone (débito)
— 65 reais
Saque (débito)— 80 reais

De acordo com as anotações de João, após essas movimentações, seu saldo no banco ficou

A
B
C
D

Observe:

  Crédito:  295 + 100 = +395

  Débito:   – 178 – 65 – 80 = – 323

Agora, o salto é:

    395 – 323 = + 72 reais

Portanto, opção "B".


08
(BPW-adaptado).

No dia 21/11/2020, o dólar comercial estava cotado a R$ 5,38 para venda.

O número 5,38, aparecem as ordem

A
B
C
D

Observe a tabela a seguir:

5 ,3 8 0
unidades décimoscentésimosmilésimos

Portanto, opção "D".


09
(IPOJUCA - PE).

Ana é sócia em uma loja e ao final de cada mês recebe 35% do faturamento total dessa loja.

Quanto ela recebeu no mês em que o faturamento total foi de R$ 12 000,00?

A
B
C
D

Como [tex] 35 \%\ = \frac{35}{100} = 0,35 [tex]. Então:

    [tex]= 0,35 × 12\ 000 [tex]

    [tex]= R \$\ 4\ 200,00 [tex]

Portanto, opção "C".


10
(GAVA).

Na figura abaixo, estão representados os três primeiros termos de uma sequência de conjuntos de círculos iguais e tangentes entre si que segue segue uma lei de formação.


A lei de formação desta sequência do número de bolinhas vermelhas é:

A
B
C
D

Substituindo n nas expressões e verificar a validade. Sendo assim, temos n = 1, 2, 3, ... Então:

  Para n = 1:  [tex] 3 \cdot 1 + 1 = 4\ bolinhas\ vermelhas [tex]

  Para n = 2:  [tex] 3 \cdot 2 + 1 = 7\ bolinhas\ vermelhas [tex]

  Para n = 3:  [tex] 3 \cdot 3 + 1 = 10\ bolinhas\ vermelhas [tex]

    ...

Portanto, opção "B".


11
(Prova Brasil).

Observe o gráfico abaixo.


O gráfico representa o sistema

A
B
C
D

A solução é a intersecção das retas. Logo, [tex](x, y) = (2,  1)[tex]. Sendo assim, por tentativas, obtemos:

[tex] A)   y = -2x\ +\ 7 = -2 \cdot 2 + 7 = 3 [tex]   (Falsa)

[tex] B)   y = -2x\ +\ 5   \Longrightarrow   -2 \cdot 2 + 5 = 1 [tex]   (Verdadeira)

    [tex] y = x - 1   \Longrightarrow   2\ -\ 1 = 1 [tex]   (Verdadeira)

[tex] C)   y = 2x\ -\ 7 = 2 \cdot 2 - 7 = -3 [tex]   (Falsa)

[tex] C)   y = 2x\ -\ 5 = 2 \cdot 2 - 5 = -1 [tex]   (Falsa)

Portanto, opção "B".


12
(BPW-adpatado).

Os dados da tabela mostram os gastos com relação ao percentual da renda mensal de uma família.

GASTOS PERCENTUAL DA
RENDA MENSAL
Moradia20%
Educação dos filhos19%
Saúde10%
Supermercado25%
Lazer6%
Despezas pessoais9%
Gastos com transportes
e outras despesas
11%
Total100%

Com os dados da tabela acima, pode-se dizer que essa família, com rendimento mensal de R$ 2.500,00, gasta com a educação dos filhos:

A
B
C
D

Como o gasto com educação dos filhos é de 19%. Como [tex] 19 \%\ = \frac{19}{100} = 0,19 [tex]. Logo:

   [tex] 0,19 \cdot 2\ 500 = R \$\ 475,00 [tex]

Portanto, opção "B".




Nenhum comentário:

Postar um comentário