Processing math: 0%

quarta-feira, 1 de junho de 2016

Quiz 34: MATEMÁTICA 9° ANO

Quiz 34: MATEMÁTICA - 9° ANO
Quiz 34: MATEMÁTICA - 9° ANO

01
(Foco da aprendizagem 2 - SEDUCE-GO).

A professora de Felipe solicitou que ele resolvesse a seguinte expressão:

N = 4 \cdot (-3)^{2}\ -\ 2^{4}

Felipe resolveu corretamente a expressão encontrando para N o valor igual a

A
B
C
D

O valor de N que Felipe encontrou foi:

    N = 4 \cdot (-3)^{2}\ -\ 2^{4}

    N = 4 \cdot 9\ -\ 16

    N = 36\ -\ 16

    N = 20

Portanto, alternativa "C".

(Fonte da resolução: Prof. Warles.)


02
(Foco da aprendizagem 2 - SEDUCE-GO).

A temperatura máxima em uma cidade em determinado dia de inverno chegou a 2°C, enquanto a mínima, nesse mesmo dia, foi de –7°C.

Neste dia, a diferença entre as temperaturas máxima e mínima nesta cidade, foi igual a

A
B
C
D

Observe:


Logo, a diferença entre as temperturas máxima e mínima é de 9 °C.

Portanto, alternativa "A".

(Fonte da resolução: Prof. Warles.)


03
(Foco da aprendizagem 2 - SEDUCE-GO).

Na turma em que Camila estuda, 40% dos estudantes são meninos.

Qual a fração que representa este valor percentual?

A
B
C
D

A fração que representa este valor percentual é de:

    40 \%\ = \frac{40}{100} = \frac{40\ ÷\ 20}{100\ ÷\ 20} = \frac{2}{5}

Portanto, alternativa "A".

(Fonte da resolução: Prof. Warles.)


04
(Foco da aprendizagem 2 - SEDUCE-GO).

A professora de Vanessa escreveu no quadro o número decimal 3,018. Em seguida pediu que ela escrevesse o número por extenso.

A escrita correta deste número por extenso é

A
B
C
D

A escrita correta do número 3,018 por extenso é:

3 ,0 1 8
inteiros décimoscentésimosmilésimos

Ou seja, três inteiros e dezoito milésimos.

Portanto, alternativa "D".

(Fonte da resolução: Prof. Warles.)


05
(Foco da aprendizagem 2 - SEDUCE-GO).

Alexandre resolveu corretamente a expressão a seguir, encontrando o seu resultado na forma de fração.

(1 + \frac{3}{5}) \cdot (-0,5)^{3}

A fração encontrada por Alexandre é igual a

A
B
C
D

A fração encontrada por Alexandre foi igual a:

    = (1 + \frac{3}{5}) \cdot (-0,5)^{3}

    = (\frac{5}{5} + \frac{3}{5}) \cdot (-\frac{5}{10})^{3}

    = (\frac{8}{5}) \cdot (-\frac{125}{1000})

    = (\frac{8}{5}) \cdot (-\frac{125\ ÷\ 25}{1000\ ÷\ 25})

    = (\frac{8}{5}) \cdot (-\frac{5}{40})

    = -\frac{40}{5\ \cdot\ 40}

    = -\frac{1}{5}

Portanto, alternativa "B".

(Fonte da resolução: Prof. Warles.)


06
(Foco da aprendizagem 2 - SEDUCE-GO).

Mariana gasta R$ 600,00 com alimentação. Este valor representa \frac{2}{5} de seu salário.

Qual o valor total, em reais, do salário de Mariana?

A
B
C
D

Se \frac{2}{5} corresponde a R$ 600,00. Então, \frac{1}{5} corresponde a R$ 300,00.

Então, o salário total de Mariana é:

    = 5 \cdot R \$\ 300,00 = R \$\ 1\ 500,00

Portanto, alternativa "D".

(Fonte da resolução: Prof. Warles.)


07
(Foco da aprendizagem 2 - SEDUCE-GO).

A medida do perímetro do hexágono regular, a seguir, é igual a 6\sqrt{2}\ cm .

(Dados: \sqrt{2} \cong 1,4 )


Um valor aproximado, em cm, para este perímetro, é igual a

A
B
C
D

O valor aproximado, em cm, do perímetro do hexágono é:

    Perímetro = 6\sqrt{2}

    Perímetro = 6 \cdot 1,4

    Perímetro = 8,4\ cm

Portanto, alternativa "C".

(Fonte da resolução: Prof. Warles.)


08
(Foco da aprendizagem 2 - SEDUCE-GO).

Gustavo calculou corretamente o valor da expressão algébrica 2x^{2} - 5x + 12, para x = −2.

O resultado encontrado por Gustavo é igual a

A
B
C
D

O resultado encontrado por Gustavo foi de:

    = 2x^{2} - 5x + 12

    = 2 \cdot (-2)^{2} - 5 \cdot (-2) + 12

    = 2 \cdot 4 + 10 + 12

    = 8 + 10 + 12

    = 30

Portanto, alternativa "A".

(Fonte da resolução: Prof. Warles.)


09
(Foco da aprendizagem 2 - SEDUCE-GO).

A figura a seguir representa uma área retangular de 120 m² onde será construída uma piscina de 8m × 6m. Ao redor desta piscina haverá uma faixa de largura constante cuja medida está indicada por x.


A medida x da faixa, em metros, é igual a

A
B
C
D

A medida x da faixa é:

    comprimento × largura = área

    (x + 8 + x) × (x + 6 + x) = 120

    (2x + 8) × (2x + 6) = 120

• Por tentativas:

Para x = 1:

    (2x + 8) × (2x + 6) = 120

    (2 \cdot 1 + 8) × (2 \cdot 1 + 6) =

    10 × 8 = 80 ≠ 120   (Falsa!)

Para x = 2:

    (2x + 8) × (2x + 6) = 120

    (2 \cdot 2 + 8) × (2 \cdot 2 + 6) =

    12 × 10 = 120 = 120   (Verdadeira!)

Para x = 3:

    (2x + 8) × (2x + 6) = 120

    (2 \cdot 3 + 8) × (2 \cdot 3 + 6) =

    14 × 12 = 168 ≠ 120   (Falsa!)

Para x = 4:

    (2x + 8) × (2x + 6) = 120

    (2 \cdot 4 + 8) × (2 \cdot 4 + 6) =

    16 × 14 = 224 ≠ 120   (Falsa!)

• Também pode resolver através da fórmula resolutiva de bhaskara.

Portanto, alternativa "B".

(Fonte da resolução: Prof. Warles.)


10
(Foco da aprendizagem 2 - SEDUCE-GO).

Observe a sequência de figuras a seguir formadas por palitos de fósforo.


Considerando que a sequência continue por mais figuras. A expressão que relaciona a quantidade de palitos (q) em função da posição de cada figura (p), desta sequência, é igual a

A
B
C
D

Vamos obter a expressão por substituição, considerando o valor da figura 1 (ordem 1) e encontrar o valor de P (palitos).

  A) P(1) = 1 + 1 = 2 ≠ 3   (Falsa)

  B) P(1) = 1^{2}\ - 1\ = 1 - 1 = 0 ≠ 3   (Falsa)

  C) P(1) = 2 \cdot 1\ + 1 = 2 + 1 = 3 = 3   (Verdadeira)

  D) P(1) = 3 \cdot 1 + 1 = 3 + 1 = 4 ≠ 3   (Falsa)

Portanto, alternativa "C".

(Fonte da resolução: Prof. Warles.)


11
(Foco da aprendizagem 2 - SEDUCE-GO).

Para fazer um barquinho, Letícia tomou uma folha quadrada de papel e seguiu os passos indicados nas figuras a seguir.


Em relação à figura 5, é correto afirmar que

A
B
C
D

Observe que o triângulo da figura 5 é isósceles. Ou seja, \overline{AB} \cong \overline{AC} e A\hat{B}D \cong A\hat{C}B. Também, a soma dos ângulos internos de qualquer triângulo vale 180°. Dessa forma:

   \hat{A} + \hat{B} + \hat{C} = 180°

   70° + \hat{B} + \hat{C} = 180°

   2 \cdot \hat{B} = 180°\ -\ 70°

    \hat{B} =\hat{C} = \frac{110°}{2} = 55°.

Portanto, alternativa "C".

(Fonte da resolução: Prof. Warles.)


12
(Foco da aprendizagem 2 - SEDUCE-GO).

Observe a imagem do relógio a seguir.


Decorridas oito horas, o menor ângulo formado entre os ponteiros deste relógio será igual a

A
B
C
D

   

Portanto, alternativa "C".

(Fonte da resolução: Prof. Warles.)


13
(Foco da aprendizagem 2 - SEDUCE-GO).

Rogério e Sabrina são colegas de turma e moram em locais diferentes. Veja no esboço a seguir, a casa de Rogério, que está no ponto R, e a de Sabrina, no ponto S. No ponto E fica a escola na qual ambos estudam.


Sabendo que Sabrina irá para a escola passando pela casa de Rogério, qual a distância percorrida por ela?

A
B
C
D

Primeiro calcular a distância entre a casa de Rogério e escola utilizando o Teorema de Pitágoras.

    a^{2} = b^{2} + c^{2}

    (2\ 500)^{2} = (1\ 500)^{2} + c^{2}

    6\ 250\ 000 = 2\ 250\ 000 + c^{2}

    6\ 250\ 000 - 2\ 250\ 000 = c^{2}

    4\ 000\ 000 = c^{2}

    c = \sqrt{4\ 000\ 000}

    c = 2\ 000\ metros

Agora, a distância percorrida por Sabrina é:

   Distãncia = 1\ 500 + 2\ 000

   Distãncia = 3\ 500

Portanto, alternativa "A".

(Fonte da resolução: Prof. Warles.)


14
(Foco da aprendizagem 2 - SEDUCE-GO).

O gráfico abaixo mostra as despesas na produção de certo produto nos sete primeiros meses do ano.


De acordo com as informações do gráfico acima, é correto afirmar que

A
B
C
D

Analisando o gráfico percebemos que o aumento nas despesas de produção foi o mesmo nos períodos de fevereiro/março e abril/maio, no valor de 100 reais.

Portanto, alternativa "D".

(Fonte da resolução: Prof. Warles.)


15
(Foco da aprendizagem 2 - SEDUCE-GO).

O gerente de um escritório coletou as medidas dos pesos de todos os seus funcionários numa tabela e representou esses dados no histograma a seguir:

Histograma dos pesos dos funcionários


A tabela que deu origem ao histograma é:

A
B
C
D

A tabela "A" que relaciona corretamente ao histograma.

Portanto, alternativa "A".

(Fonte da resolução: Prof. Warles.)




Nenhum comentário:

Postar um comentário